skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Bo-Han"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bound states in the continuum (BICs) hold significant promise in manipulating electromagnetic fields and reducing losses in optical structures, leading to advancements in fundamental research and practical applications. Despite their observation in various optical systems, the behavior of BIC in whispering-gallery-modes (WGMs) optical microcavities, essential components of photonic integrated chips, has yet to be thoroughly explored. In this study, we propose and experimentally identify a robust mechanism for generating quasi-BIC in a single deformed microcavity. By introducing boundary deformations, we construct stable unidirectional radiation channels as leaking continuum shared by different resonant modes and experimentally verify their external strong mode coupling. This results in drastically suppressed leaking loss of one originally long-lived resonance, manifested as more than a threefold enhancement of its quality (Q) factor, while the other short-lived resonance becomes more lossy, demonstrating the formation of Friedrich–Wintgen quasi-BICs as corroborated by the theoretical model and experimental data. This research will provide a practical approach to enhance theQ-factor of optical microcavities, opening up potential applications in the area of deformed microcavities, nonlinear optics, quantum optics, and integrated photonics. 
    more » « less
  2. Abstract Entanglement has been known to boost target detection, despite it being destroyed by lossy-noisy propagation. Recently, Zhuang and Shapiro (2022Phys. Rev. Lett.128010501) proposed a quantum pulse-compression radar to extend entanglement’s benefit to target range estimation. In a radar application, many other aspects of the target are of interest, including angle, velocity and cross section. In this study, we propose a dual-receiver radar scheme that employs a high time-bandwidth product microwave pulse entangled with a pre-shared reference signal available at the receiver, to investigate the direction of a distant object and show that the direction-resolving capability is significantly improved by entanglement, compared to its classical counterpart under the same parameter settings. We identify the applicable scenario of this quantum radar to be short-range and high-frequency, which enables entanglement’s benefit in a reasonable integration time. 
    more » « less
  3. Abstract Quantum repeater is an essential ingredient for quantum networks that link distant quantum modules such as quantum computers and sensors. Motivated by distributed quantum computing and communication, quantum repeaters that relay discrete-variable quantum information have been extensively studied; while continuous-variable (CV) quantum information underpins a variety of quantum sensing and communication application, a quantum-repeater architecture for genuine CV quantum information remains largely unexplored. This paper reports a CV quantum-repeater architecture based on CV quantum teleportation assisted by the Gottesman–Kitaev–Preskill code to significantly suppress the physical noise. The designed CV quantum-repeater architecture is shown to significantly improve the performance of entanglement-assisted communication, target detection based on quantum illumination and CV quantum key distribution, as three representative use cases for quantum communication and sensing. 
    more » « less